Semester

Spring

Date of Graduation

2013

Document Type

Dissertation

Degree Type

PhD

College

Statler College of Engineering and Mineral Resources

Department

Chemical and Biomedical Engineering

Committee Chair

Rakesh Gupta

Committee Co-Chair

Sushant Agarwal

Committee Member

Evan Granite

Committee Member

Karl Haider

Committee Member

Charter Stinespring

Abstract

The objective of this research was to develop an efficient, low cost, recyclable solid sorbent for carbon dioxide adsorption from large point sources, such as coal-fired power plants. The current commercial way to adsorb CO 2 is to use a liquid amine or ammonia process. These processes are used in industry in the "sweetening" of natural gas, but liquid based technologies are not economically viable in the adsorption of CO2 from power plants due to the extremely large volume of CO2 and the inherent high regeneration costs of cycling the sorbent. Therefore, one of the main objectives of this research was to develop a novel sorbent that can be cycled and uses very little energy for regeneration.;The sorbent developed here is composed of a nanoclay (montmorillonite), commonly used in the production of polymer nanocomposites, grafted with commercially available amines. (3-aminopropyl) trimethoxysilane (APTMS) was chemically grafted to the edge hydroxyl groups of the clay. While another amine, polyethylenimine (PEI), was attached to the surface of the clay by electrostatic interactions. To confirm the attachment of amines to the clay, the samples were characterized using FTIR and the corresponding peaks for amines were observed. The amount of amine loaded onto the support was determined by TGA techniques. The treated clay was initially analyzed for CO2 adsorption in a pure CO 2 stream. The adsorption temperatures that had the highest adsorption capacity were determined to be between 75°C and 100°C for all of the samples tested at atmospheric pressure. The maximum CO2 adsorption capacity observed was with nanoclay treated with both APTMS and PEI at 85°C. In a more realistic flue gas of 10% CO2 and 90% N2, the adsorbents had essentially the same overall CO2 adsorption capacity indicating that the presence of nitrogen did not hinder the adsorption of CO2. Adsorption studies in pure CO2 at room temperature under pressure from 40-300 PSI were also conducted. The average adsorption capacity for the adsorbents did not change significantly over the range of pressures studied, indicating that the uptake of CO2 was due mainly to chemical reaction and not to the physical absorption of CO2. The average CO2 adsorption capacity at 300 psi and room temperature for clay treated with APTMS alone was 7.6 wt% CO2. The combination of APTMS and PEI treatment increased the average adsorption capacity to 11.4 wt% CO2.;The regeneration method for the majority of the adsorption tests employed pure N2 at 100°C as a sweep gas, and it was successful in regenerating the adsorbent. The regeneration of the adsorbent was also studied with pure and humid CO2 at 155°C. Using CO2 as a sweep gas for regeneration is more commercially relevant and was able to regenerate the sorbents. Vacuum regeneration and the stability of the adsorbents to water vapor were also studied. Our studies showed that the developed adsorbents were able to adsorb CO2 at atmospheric conditions using pure CO 2 as well as 10% CO2 and 90% nitrogen. Additionally, the adsorbents developed have the potential to be cycled using commercially applicable regeneration schemes. While these results are comparable to results of other emerging CO2 adsorption technologies, our adsorbent has the benefit of a very cheap support, and it could provide a commercially useful CO 2 adsorbent.

Share

COinS