Semester
Fall
Date of Graduation
2012
Document Type
Thesis
Degree Type
MS
College
Statler College of Engineering and Mineral Resources
Department
Lane Department of Computer Science and Electrical Engineering
Committee Chair
Xin Li
Committee Co-Chair
Hanny Ammar
Committee Member
Guodong Guo
Abstract
Recognizing Arabic handwritten words is a difficult problem due to the deformations of different writing styles. Moreover, the cursive nature of the Arabic writing makes correct segmentation of characters an almost impossible task. While there are many sub systems in an Arabic words recognition system, in this work we develop a sub system to recognize Part of Arabic Words (PAW). We try to solve this problem using three different approaches, implicit segmentation and two variants of holistic approach. While Rothacker found similar conclusions while this work is being prepared, we report the difficulty in locating characters in PAW using Scale Invariant Feature Transforms under the first approach. In the second and third approaches, we use holistic approach to recognize PAW using Support Vector Machine (SVM) and Active Shape Models (ASM). While there are few works that use SVM to recognize PAW, they use a small dataset; we use a large dataset and a different set of features. We also explain the errors SVM and ASM make and propose some remedies to these errors as future work.
Recommended Citation
Alhmouz, Omar, "Recognition of Arabic handwritten words" (2012). Graduate Theses, Dissertations, and Problem Reports. 300.
https://researchrepository.wvu.edu/etd/300