"Generalizations of colorability and connectivity of graphs" by Xiankun Zhang

Semester

Fall

Date of Graduation

1998

Document Type

Dissertation

Degree Type

PhD

College

Eberly College of Arts and Sciences

Department

Mathematics

Committee Chair

Hong-Jian Lai.

Abstract

Let G = (V, E) be a graph and A a non-trivial Abelian group, and let F( G, A) denote the set of all functions f : E (G) → A. Denote by D an orientation of E( G). Then G is A-colorable if and only if for every f ∈ F(G, A) there exists an A-coloring c: V( G) → A such that for every e = (x, y) ∈ E(G) (assumed to be directed from x to y), c( x)--c(y) ≠ f(e). We define the group chromatic number of c1 (G) to be the minimum number m for which G is A-colorable for any Abelian group A of order ≥ m under the orientation D. Chapters 2 and 3 are mainly concerned with group chromatic number and some results are given.;The edge-integrity of a graph G is defined by minS⊆E GS +mG-S , where mG-S denotes the maximum order of a component of G-S . Let I'(G) denote the edge-integrity of a graph G. We define a graph G to be I'-maximal if for every edge e in G, the complement of graph G, I'( G + e) > I'( G). In chapter 4, some results of I' -maximal graphs are established, the girth of a connected I'-maximal graph is given and lower and upper bounds on the size of I'-maximal connected graphs with given order and edge-integrity are investigated. Also, the I'-maximal trees and unicyclic graphs are completely characterized.;For any given edges e1, e 2 in E(G), a spanning trail of G with e1 as the first edge and e2 as the last edge is called a spanning (e 1, e2)-trail. In chapter 5, we consider best possible degree conditions to assure the existence of these trails for every pair of edges e1, e 2 in a 3-edge-connected graph G.

Share

COinS