Semester
Spring
Date of Graduation
2019
Document Type
Thesis
Degree Type
MS
College
Statler College of Engineering and Mineral Resources
Department
Mechanical and Aerospace Engineering
Committee Chair
Andrew Nix
Committee Co-Chair
Donald Ferguson
Committee Member
Donald Ferguson
Committee Member
Patrick Browning
Abstract
Pressure gain combustion (PGC) technologies, specifically rotating detonation engines (RDEs), are poised to provide the next big leap in gas turbine engine advancement, significantly increasing the thermal. RDEs make use of thermodynamic advantages of isochoric as opposed to isobaric combustion. Theorized to increase thermal efficiency by up to 7% [1], the RDE would have significant impact on reducing anthropogenic carbon emissions. In addition to efficiency gains, the RDE also provides mechanical simplicity and reduced size advantages compared to it’s traditional counterparts and PGC competition.
The United States (U.S.) Department of Energy (DOE) National Energy Technology Laboratory (NETL) maintains and operates two rotating detonation combustor (RDC) facilities. Firstly, a 6 inch diameter lab scale RDE (LSRDE) is utilized to better understand the operational regime. Secondly, the bench scale RDE (BSRDE) enables optical access within the plenums to investigate the dynamic interactions at the injection inlet.
This work begins to investigate the relationships between the NETL facilities. By performing a dimensional analysis on the RDC system and creating a data reduction routine to more similarly compare data from the two facilities, it was found that there is little connection between the two experimental rigs. It is believed that the primary cause of this disconnection is the significant difference in physical mechanisms driving the shock and detonation waves in each respective facility. However, the methodology presented in this work does begin to reveal the interaction of system parameters and could prove to be useful as RDE operation becomes better understood.
Recommended Citation
Billups, David Thomas, "Scaling Analysis and Experimental Investigation of a Rotating Detonation Engine" (2019). Graduate Theses, Dissertations, and Problem Reports. 3774.
https://researchrepository.wvu.edu/etd/3774
Included in
Aerodynamics and Fluid Mechanics Commons, Energy Systems Commons, Heat Transfer, Combustion Commons, Propulsion and Power Commons