Semester
Spring
Date of Graduation
2019
Document Type
Dissertation (Open Access)
Degree Type
PhD
College
Statler College of Engineering and Mineral Resources
Department
Mechanical and Aerospace Engineering
Committee Chair
Nianqiang Wu
Committee Co-Chair
Mikel B. Holcomb
Committee Member
Terence D. Musho
Committee Member
Edward M. Sabolsky
Committee Member
Konstantinos A. Sierros
Abstract
When a thin film thickness becomes ultrathin, the magnetic properties of the thin film can be altered, degraded or even lost. The loss of magnetism has been called the magnetic dead layer (MDL). Considering the trend for miniaturization of information storage and other devices, the MDL is a significant challenge for materials science and engineering. La1-xSrxMnO3 (LSMO) with x=0.3 is an excellent model material that exhibits ferromagnetism at room temperature to study the MDL. This dissertation focuses on understanding the MDL in LSMO films on their own and the effect of this dead layer when coupling with a ferroelectric material [La0.7Sr0.3MnO3/PbZr0.2Ti0.8O3 (LSMO/PZT)].
The LSMO/PZT magnetic heterostructures
Ferromagnetic-ferroelectric layers at the interface can show strong magnetoelectric coupling, allowing electrical control of magnetism or vice versa. Images of magnetic domains and interfacial Ti spins were taken at the same locations of the LSMO/PZT heterostructures by utilizing photoemission electron microscopy (PEEM). The interfacial Ti spins prefer to be perpendicular to ferromagnetic domains in the adjacent layer. Using image analysis techniques confirms the population of magnetic switching and the interfacial spins are related to the magnetization within LSMO. In other words, if the ferromagnetic layer begins to lose its magnetic order, the coupling between ferroelectric and ferromagnetic layers will also decrease or even disappear. Thus, this work suggests a magnetoelectric dead layer is about 2.8 nm for the LSMO layer. This result further emphasizes the need to enhance the magnetization in magnetic thin films.
The LSMO/STO magnetic heterostructures
The location of the magnetic reduction can have strong effects on devices for some magnetic applications. Does this reduction occur only at the surface, the interface, or throughout the material? Polarized neutron reflectometry can provide depth dependent magnetic properties. Using this method, we determined that the MDL at the surface of LSMO has a thickness of about 1.7 nm. We attribute the polar discontinuity induced charge reconstruction to interpret the suppressed magnetization at the surface. Unlike the MDL at the surface, the resultant enhanced magnetization at the interface is likely subject to oxygen vacancies. The magnetic moments originate from unpaired electrons which occupy the d orbitals on the Mn site. Oxygen vacancies result in charge accumulation on the interfacial region explained by raising densities of magnetic moments on the Mn site and the enlargement of the ratio of mixed Mn2+/Mn3+ states at the interfacial region.
Recommended Citation
Huang, Chih-Yeh, "Reflectivity and photoemission electron microscopy studies of magnetic heterostructures" (2019). Graduate Theses, Dissertations, and Problem Reports. 3869.
https://researchrepository.wvu.edu/etd/3869