Semester

Spring

Date of Graduation

2010

Document Type

Thesis

Degree Type

MS

College

Statler College of Engineering and Mineral Resources

Department

Lane Department of Computer Science and Electrical Engineering

Committee Chair

Tim Menzies

Abstract

Solutions to non-linear requirements engineering problems may be "brittle"; i.e. small changes may dramatically alter solution effectiveness. Hence, it is not enough to just generate solutions to requirements problems---we must also assess solution robustness. This thesis aims to address two concerns: (a) Is demonstrating robustness a time consuming task? and (b) Is it necessary that solution quality be traded off against solution robustness?;Using a Bayesian ranking heuristic, the KEYS2 algorithm fixes a small number of important variables, rapidly pushing the search into a stable, optimal plateau. By design, KEYS2 generates decision ordering diagrams (in time experimentally shown to be O(N2)). Once generated, these diagrams can confirm solution robustness in linear time. When assessed in terms of reducing inference times, increasing solution quality, and decreasing the variance of the generated solution, KEYS2 out-performs other search algorithms (simulated annealing, A*, MaxWalkSat).

Share

COinS