Semester
Fall
Date of Graduation
2013
Document Type
Dissertation
Degree Type
PhD
College
Statler College of Engineering and Mineral Resources
Department
Mechanical and Aerospace Engineering
Committee Chair
Nianqiang Wu
Committee Co-Chair
Ever J. Barbero
Committee Member
Lian-Shin Lin
Committee Member
Dongling Ma
Committee Member
Terence Musho
Abstract
Photocatalytic hydrogen generation by water splitting is a promising technique to produce clean and renewable solar fuel. The development of effective semiconductor photocatalysts to obtain efficient photocatalytic activity is the key objective. However, two critical reasons prevent wide applications of semiconductor photocatalysts: low light usage efficiency and high rates of charge recombination. In this dissertation, several low-dimensional semiconductors were synthesized with hydrothermal, hydrolysis, and chemical impregnation methods. The band structures of the low-dimensional semiconductor materials were engineered to overcome the above mentioned two shortcomings. In addition, the correlation between the photocatalytic activity of the low-dimensional semiconductor materials and their band structures were studied.;First, we studied the effect of oxygen vacancies on the photocatalytic activity of one-dimensional anatase TiO2 nanobelts. Given that the oxygen vacancy plays a significant role in band structure and photocatalytic performance of semiconductors, oxygen vacancies were introduced into the anatase TiO2 nanobelts during reduction in H2 at high temperature. The oxygen vacancies of the TiO2 nanobelts boosted visible-light-responsive photocatalytic activity but weakened ultraviolet-light-responsive photocatalytic activity. As oxygen vacancies are commonly introduced by dopants, these results give insight into why doping is not always beneficial to the overall photocatalytic performance despite increases in absorption. Second, we improved the photocatalytic performance of two-dimensional lanthanum titanate (La2Ti2 O7) nanosheets, which are widely studied as an efficient photocatalyst due to the unique layered crystal structure. Nitrogen was doped into the La2Ti2O7 nanosheets and then Pt nanoparticles were loaded onto the La2Ti2O7 nanosheets. Doping nitrogen narrowed the band gap of the La2Ti 2O7 nanosheets by introducing a continuum of states by the valence band edge, unlike the mid-gap states introduced by oxygen vacancies, leading to an improvement in visible and UV photocatalysis. The Pt nanoparticles both enhanced separation of charge carriers and acted as reaction sites for hydrogen evolution. The photocatalytic hydrogen generation rate of the La 2Ti2O7 nanosheets was increased to ∼21 muM g-1 hr-1 from zero in visible light by nitrogen doping and Pt loading, showing the importance of the positioning of dopant energy levels within the band gap.;Third, a hematite/reduced graphene oxide (alpha-Fe2 2O3/rGO) nanocomposite was synthesized by a hydrolysis method. The photocatalytic oxygen evolution rate of the hematite was increased from 387 to 752 muM g-1 hr-1 by incorporating rGO. Photoelectrochemical measurements showed that coupling the hematite nanoparticles with the rGO can greatly increase the photocurrent and reduce the charge recombination rate, overcoming the poor charge recombination characteristics of hematite and allowing its small band gap to be taken advantage of. Fourth, a Au/La 2Ti2O7/rGO heterostructure was synthesized to further enhance the photocatalytic hydrogen generation rate of the La 2Ti2O7 nanosheets. The enhanced performance of photocatalytic water splitting was due to plasmonic energy transfer, which resulted from the plasmonic Au nanoparticles on the La2Ti 2O7 nanosheets. This heterostructure showed doping, charge extraction, and plasmonics work synergistically. Fifth, nanoscale p-n junctions on the rGO were formed by depositing the p-type MoS 2 nanoplatelets onto the n-type nitrogen-doped rGO. The p-MoS2/n-rGO heterostructure had significant photocatalytic hydrogen generation activity under solar light irradiation. The enhanced charge generation and suppressed charge recombination due to the p-n junctions led to enhance solar hydrogen generation reaction while allowing replacement of the expensive Pt nanoparticles with an eco-friendly alternative.;The research results in this dissertation are contributed to a better understanding of the relationship between the band structure tuning and photocatalytic activity of low-dimensional semiconductor nanostructures. The results lay out guidelines for the enhancement of large band gap semiconductors with poor solar utilization and small band gap semiconductors with poor charge recombination characteristics alike. Additionally, it is shown that the rare earth co-catalyst can be replaced with an earth friendly alternative, leading to a further increase in performance. The findings of this thesis can be used to guide photocatalyst selection and optimization for solar to hydrogen conversion.
Recommended Citation
Meng, Fanke, "Correlation of Photocatalytic Activity with Band Structure of Low-dimensional Semiconductor Nanostructures" (2013). Graduate Theses, Dissertations, and Problem Reports. 468.
https://researchrepository.wvu.edu/etd/468