Semester

Spring

Date of Graduation

2012

Document Type

Dissertation

Degree Type

PhD

College

Statler College of Engineering and Mineral Resources

Department

Lane Department of Computer Science and Electrical Engineering

Committee Chair

Arun Ross

Abstract

Biometrics is the science of recognizing people based on their physical or behavioral traits such as face, fingerprints, iris, and voice. Among the various traits studied in the literature, ocular biometrics has gained popularity due to the significant progress made in iris recognition. However, iris recognition is unfavorably influenced by the non-frontal gaze direction of the eye with respect to the acquisition device. In such scenarios, additional parts of the eye, such as the sclera (the white of the eye) may be of significance. In this dissertation, we investigate the use of the sclera texture and the vasculature patterns evident in the sclera as potential biometric cues. Iris patterns are better discerned in the near infrared spectrum (NIR) while vasculature patterns are better discerned in the visible spectrum (RGB). Therefore, multispectral images of the eye, consisting of both NIR and RGB channels, were used in this work in order to ensure that both the iris and the vasculature patterns are successfully imaged.;The contributions of this work include the following. Firstly, a multispectral ocular database was assembled by collecting high-resolution color infrared images of the left and right eyes of 103 subjects using the DuncanTech MS 3100 multispectral camera. Secondly, a novel segmentation algorithm was designed to localize the spacial extent of the iris, sclera and pupil in the ocular images. The proposed segmentation algorithm is a combination of region-based and edge-based schemes that exploits the multispectral information. Thirdly, different feature extraction and matching method were used to determine the potential of utilizing the sclera and the accompanying vasculature pattern as biometric cues. The three specific matching methods considered in this work were keypoint-based matching, direct correlation matching, and minutiae matching based on blood vessel bifurcations. Fourthly, the potential of designing a bimodal ocular system that combines the sclera biometric with the iris biometric was explored.;Experiments convey the efficacy of the proposed segmentation algorithm in localizing the sclera and the iris. The use of keypoint-based matching was observed to result in the best recognition performance for the scleral patterns. Finally, the possibility of utilizing the scleral patterns in conjunction with the iris for recognizing ocular images exhibiting non-frontal gaze directions was established.

Share

COinS