"Connectivity and spanning trees of graphs" by Xiaofeng Gu

Semester

Summer

Date of Graduation

2013

Document Type

Dissertation

Degree Type

PhD

College

Eberly College of Arts and Sciences

Department

Mathematics

Committee Chair

Hong-Jian Lai

Abstract

This dissertation focuses on connectivity, edge connectivity and edge-disjoint spanning trees in graphs and hypergraphs from the following aspects.;1. Eigenvalue aspect. Let lambda2(G) and tau( G) denote the second largest eigenvalue and the maximum number of edge-disjoint spanning trees of a graph G, respectively. Motivated by a question of Seymour on the relationship between eigenvalues of a graph G and bounds of tau(G), Cioaba and Wong conjectured that for any integers d, k ≥ 2 and a d-regular graph G, if lambda 2(G)) < d -- 2k-1d+1 , then tau(G) ≥ k. They proved the conjecture for k = 2, 3, and presented evidence for the cases when k ≥ 4. We propose a more general conjecture that for a graph G with minimum degree delta ≥ 2 k ≥ 4, if lambda2(G) < delta -- 2k-1d+1 then tau(G) ≥ k. We prove the conjecture for k = 2, 3 and provide partial results for k ≥ 4. We also prove that for a graph G with minimum degree delta ≥ k ≥ 2, if lambda2( G) < delta -- 2k-1d +1 , then the edge connectivity is at least k. As corollaries, we investigate the Laplacian and signless Laplacian eigenvalue conditions on tau(G) and edge connectivity.;2. Network reliability aspect. With graphs considered as natural models for many network design problems, edge connectivity kappa'(G) and maximum number of edge-disjoint spanning trees tau(G) of a graph G have been used as measures for reliability and strength in communication networks modeled as graph G. Let kappa'(G) = max{lcub}kappa'(H) : H is a subgraph of G{rcub}. We present: (i) For each integer k > 0, a characterization for graphs G with the property that kappa'(G) ≤ k but for any additional edge e not in G, kappa'(G + e) ≥ k + 1. (ii) For any integer n > 0, a characterization for graphs G with |V(G)| = n such that kappa'(G) = tau( G) with |E(G)| minimized.;3. Generalized connectivity. For an integer l ≥ 2, the l-connectivity kappal( G) of a graph G is defined to be the minimum number of vertices of G whose removal produces a disconnected graph with at least l components or a graph with fewer than l vertices. Let k ≥ 1, a graph G is called (k, l)-connected if kappa l(G) ≥ k. A graph G is called minimally (k, l)-connected if kappal(G) ≥ k but ∀e ∈ E( G), kappal(G -- e) ≤ k -- 1. A structural characterization for minimally (2, l)-connected graphs and some extremal results are obtained. These extend former results by Dirac and Plummer on minimally 2-connected graphs.;4. Degree sequence aspect. An integral sequence d = (d1, d2, ···, dn) is hypergraphic if there is a simple hypergraph H with degree sequence d, and such a hypergraph H is a realization of d. A sequence d is r-uniform hypergraphic if there is a simple r- uniform hypergraph with degree sequence d. It is proved that an r-uniform hypergraphic sequence d = (d1, d2, ···, dn) has a k-edge-connected realization if and only if both di ≥ k for i = 1, 2, ···, n and i=1ndi≥ rn-1r-1 , which generalizes the formal result of Edmonds for graphs and that of Boonyasombat for hypergraphs.;5. Partition connectivity augmentation and preservation. Let k be a positive integer. A hypergraph H is k-partition-connected if for every partition P of V(H), there are at least k(| P| -- 1) hyperedges intersecting at least two classes of P. We determine the minimum number of hyperedges in a hypergraph whose addition makes the resulting hypergraph k-partition-connected. We also characterize the hyperedges of a k-partition-connected hypergraph whose removal will preserve k-partition-connectedness.

Share

COinS