Semester

Spring

Date of Graduation

2013

Document Type

Thesis

Degree Type

MS

College

College of Physical Activity and Sport Sciences

Department

Exercise Physiology

Committee Chair

I Mark Olfert

Committee Co-Chair

Stephen Alway

Committee Member

Emidio Pistilli

Abstract

Angiogenesis is an important adaptation to exercise, occurring in response to a multitude of different stimuli including: shear stress, mechanical stretch, ischemia, electrical stimulation, and exercise. Current thinking suggests skeletal muscle angiogenesis is a temporal process controlled by a balance between positive and negative angiogenic proteins. But there is limited information on what molecular mediators control skeletal muscle angiogenesis in this time line, creating a critical need to clarify how individual protein responses regulate physiologic skeletal muscle angiogenesis in response to exercise training and/or physical deconditioning. Our objective is to characterize the temporal expression of several key positive (VEGF, MMP-2, MMP-9, nucleolin) and negative (TSP-1, endostatin) angiogenic factors under basal conditions, after acute exercise, in response to training, and after detraining. The central hypothesis is that training and deconditioning will cause temporally coordinated changes in positive and negative angiogenic regulators in response to exercise training, which will be reversed during detraining.

Share

COinS