Semester
Spring
Date of Graduation
2013
Document Type
Thesis
Degree Type
MS
College
Eberly College of Arts and Sciences
Department
Chemistry
Committee Chair
Kung K Wang
Committee Co-Chair
Jeffrey L Petersen
Committee Member
Bjoern C Soederberg
Abstract
Bowl-shaped and basket-shaped polycyclic aromatic hydrocarbons (PAHs) have attracted considerable attention in recent years. They are challenging targets for total synthesis due to the presence of substantial strain energy in the curved structures. A solution-phase synthesis of a bowl-shaped polycyclic aromatic hydrocarbon C27H12 was explored. The use of the casecade radical cyclization reactions of a benzannulated enyne-allene is a key feature of this synthetic pathway. The mild reaction conditions provide efficient and flexible designs for bowl-shaped and basked-shaped PAHs and their precursors. Our proposed synthesis strategy for the bowl-shaped C27H12 involves an initial synthesis of a benzannulated enediynyl propargylic alcohols followed by the cascade cyclization reactions of the resulting enyne-allenes. The use of the palladium-catalyzed intramoleular arylation reactions is proposed as a key step leading to the final products. Specifically, transformation of 1-indanone to a key intermediate, 2-methoxy-2-(2- methoxyethyl)-1-indanone, was extensively investigated, and the conditions for forming 1-(2-ethynylphenyl)-2-(2,6-dichlorophenyl)ethyne via the Sonogashira reaction were established. Condensation between the 1-indanone and the ethyny1 derivatives produced the benzannulated enediynyl propargylic alcohol. Chlorinated P AHs as potential precursors leading to the bowlshpaed Cz1H12 hydrocarbon have been successfully synthesized.
Recommended Citation
Sun, Yang-Sheng, "Development of a Synthetic Pathway Toward a Bowl-Shaped C 27H12 Polycyclic Aromatic Hydrocarbon" (2013). Graduate Theses, Dissertations, and Problem Reports. 5004.
https://researchrepository.wvu.edu/etd/5004