Date of Graduation
2016
Document Type
Dissertation
Degree Type
PhD
College
Eberly College of Arts and Sciences
Department
Physics and Astronomy
Committee Chair
Alan D Bristow
Committee Co-Chair
Mikel Holcomb
Committee Member
David Lederman
Committee Member
Tudor Stanescu
Committee Member
Thomas E Wilson
Abstract
Terahertz time-domain spectroscopy (THz-TDS) is a versatile method to determine lattice, electronic charge and spin dynamics. This dissertation employs THz-TDS to study the spin and charge dynamics in topological insulator and antiferromagnetic systems. Observing time-domain effects on the scale of picoseconds gives unprecedented control over optoelectronic properties. Methods and challenges of THz generation, detection, and transmission are outlined. The wealth of light-matter interactions present in all nonlinear optical experiments are discussed, including primarily optical rectification, shift currents, and injection currents. Each of these gives valuable insight into the carrier dynamics of a material type.;Conventional electronics can be improved in their speed and efficiency by taking advantage of an additional degree of freedom- electron spin. Therefore, we consider material types which exhibit great potential to replace common electronic materials while simultaneously employing electron spin for information storage or transport.;Antiferromagnets show a type of spin-order that has the ability to store bits without unwanted interactions between neighboring particles. In antiferromagnetic MnF2 which has a Neel temperature of TN = 67 K, THz-TDS is performed on one-magnon and two-magnon resonances in the 0.1-2.3 THz range while varying the temperature from 6 to 295 K. The behavior of the one-magnon resonance is modeled by modified molecular field theory with an additional coupling term j set as a free parameter to fit the data. The resulting best fit value j = 1.1 provides the first experimental evidence indicating that neighboring spins in MnF 2 are only weakly coupled, closely approximating mean-field theory. Time-of-flight analysis was performed on the transmitted THz pulses to measure the temperature-dependent THz refractive index, which was modeled by phonon energy in the T > TN regime and magnetic energy in the T < TN regime. In the range T < 10 K, measured data deviates from this theory, and can be modeled by internal energy from hyperfine interactions, providing the first direct observation of hyperfine interactions in THz spectroscopy.;Topological insulators exhibit the ability to transport spin-polarized currents along their surfaces with high mobilities. Phase-related pulses at photon energies 0.8 and 1.6 eV are used to simultaneously inject shift and injection currents into thin-films of the prototypical topological insulator Bi2Se3, and the foundation is laid out for an extensive study of the novel carrier properties in topological surface states. A method of symmetry analysis based on the crystal lattice is developed for isolation and individual study of the surfaceonly shift currents, which are threefold symmetric with equal components parallel and perpendicular to the pump polarization, and bulk/surface injection currents, which are isotropic parallel to the pump polarization and vanishing perpendicular to it. Pump energies can be tuned through the Dirac point, a capability which holds promise for the search of smoking gun evidence for the novel topological insulator surface state behavior that has been theorized.
Recommended Citation
Bas, Derek A., "Optical and Terahertz Measurements of Spintronic Materials" (2016). Graduate Theses, Dissertations, and Problem Reports. 5161.
https://researchrepository.wvu.edu/etd/5161