Date of Graduation

2016

Document Type

Dissertation

Degree Type

PhD

College

Eberly College of Arts and Sciences

Department

Geology and Geography

Committee Chair

Timothy R Carr

Committee Co-Chair

Ebrahim Fathi

Committee Member

Dengliang Gao

Committee Member

Amy Weislogel

Committee Member

Thomas Wilson

Abstract

The Bakken petroleum system (Devonian-Mississippian) in the Williston basin of North Dakota and Montana in the United States, and Saskatchewan and Manitoba in Canada is one of the largest unconventional oil plays in North America. The Bakken Formation consists of three members: upper, middle, and lower. Both upper and lower members are shale (source rocks), whereas the middle member (reservoir rock) is composed of mixed lithologies, including sandstone, dolostone, and limestone. Underlying the lower Bakken shale member, the Three Forks Formation is another target for hydrocarbon exploration.;Although the middle Bakken member along with the Three Forks Formation have been the targets for horizontal drilling and hydraulic stimulation throughout the basin, several uncertainties remain, including facies variation due to depositional and diagenetic controls on mineral composition and organic matter content in the Bakken shale members, which could play a significant role in hydrocarbon generation and production. Although the Bakken shale members may look homogeneous in the appearance, they are significantly heterogeneous and complex mixture of quartz, smectite, illite, carbonate, pyrite, and kerogen in varying proportions. Improved characterization of the Bakken shale lithofacies is important to better understand depositional environment, lithofacies distribution, and their potential influence on hydrocarbon production.;The main objective of this work is to investigate vertical and lateral heterogeneities of the Bakken shale lithofacies, based on mineralogy and organic matter richness. Secondly, if the Bakken shale members are composed of different lithofacies, can they be associated with different depositional and/or diagenetic conditions, which could influence source, transportation, and preservation of organic matter and sediment in the Williston basin.;Core data (such as X-ray diffraction, X-ray fluorescence, and Total Organic Carbon content), conventional borehole geophysical logs (such as gamma, resistivity, bulk density, neutron porosity, and photo-electric factor), and advanced petrophysical logs (such as Spectral Gamma and Pulsed Neutron Spectroscopy) are used and integrated together to classify the Bakken shale lithofacies and build models of lithofacies distribution at multiple scales. Usually there are minimal core data, scattered advanced well logs, and ubiquitous conventional well log suites in a petroliferous basin, which hinders lithofacies analysis and petrophysical modeling. Therefore, a significant effort of this work is geared towards developing and applying cost-effective mathematical algorithms (such as Support Vector Machine and Artificial Neural Network etc.) and geostatistical techniques (such as Sequential Indicator Simulation) to classify, predict, and interpolate shale lithofacies with high accuracy, using conventional well log-derived petrophysical parameters from several wells.;The results show that both upper and lower Bakken shale members are vertically and laterally heterogeneous at core, well, and regional scales. Bakken shale members can be classified as five different lithofacies, in terms of mineralogy and organic matter content. Organic-rich shale lithofacies are more dominant than organic-poor shale lithofacies. It appears several factors (such as source of minerals, paleo-redox conditions, organic matter productivity, and preservation etc.) controlled the Bakken shale lithofacies distribution pattern. Silica in the Organic Siliceous Shale (OSS) lithofacies near the basin center is hypothesized to be related to the presence of biogenic silica (e.g. radiolaria), whereas the portion of OSS lithofacies near the basin margin is believed to be associated with eolian action. High organic matter content in the Organic Mudstone (OMD) lithofacies near the basin margin could be interpreted due to the presence of algal matter. The borehole geophysical, petrophysical approaches, and the 3D lithofacies modeling techniques developed in this study can be applied to detailed studies of complex shale formations and exploration of hydrocarbon resources worldwide.

Share

COinS