Date of Graduation
2016
Document Type
Thesis
Degree Type
MS
College
Statler College of Engineering and Mineral Resources
Department
Mechanical and Aerospace Engineering
Committee Chair
Ever J Barbero
Committee Co-Chair
Bruce S Kang
Committee Member
Eduardo M Sosa
Abstract
Well-designed laminated composites do not fail suddenly but rather develop microscopic progressive damage that leads to changes in macroscopic material response, such as matrix cracks, stiffness reduction, and failure. Simulation techniques are able to predict damage initiation and evolution as a function of service conditions. A method for obtaining material properties for damage analysis of Glass and Carbon fiber composites is proposed using a progressive damage analysis (PDA) model implemented in Abaqus.;The predictive capability of Progressive Damage Analysis (PDA) methods relies on material properties that characterize the ability of the composite to resist damage initiation and to delay damage progression. Although elastic moduli data and standard experimental methods exist, data and methods do not exist for damage-related properties. However, experimental data displaying macroscopic effects of damage (e.g., crack density and stiffness reduction) exists for a number of material systems. These experimental methods are sufficiently standardized to be used for other material systems.;The purpose of this study is to develop a method to obtain the missing material properties by adjusting their values so that the predicted material response matches experimental data. This methodology is based on minimizing the error between simulation predictions and available experimental data. Once the material properties are obtained, the simulation predictions are compared to a broad set of experimental data. Finally, sensitivity and convergence of Abaqus PDA is also studied.
Recommended Citation
Cabrera Barbero, Javier, "Determination of material properties for progressive damage analysis in carbon epoxy laminates using Abaqus" (2016). Graduate Theses, Dissertations, and Problem Reports. 5296.
https://researchrepository.wvu.edu/etd/5296