Semester
Summer
Date of Graduation
2014
Document Type
Dissertation
Degree Type
PhD
College
Statler College of Engineering and Mineral Resources
Department
Chemical and Biomedical Engineering
Committee Chair
Debangsu Bhattacharyya
Committee Co-Chair
Debangsu Bhattacharyya
Committee Member
Muhammad A. Choudhry
Committee Member
Richard Turton
Committee Member
Stephen E. Zitney
Committee Member
John Zondlo
Abstract
In this paper, a systematic approach to design the control system of a commercial-scale integrated gasification combined cycle (IGCC) power plant with CO2 capture is considered. The control system design is developed with the objective of optimizing a desired scalar function while satisfying operational and environmental constraints in the presence of measured and unmeasured disturbances. Various objective functions can be considered for the control system design such as maximization of profit, maximization of the power produced, or minimization of the auxiliary power consumed in the plant. The design of such a control system can make the IGCC plant suitable to play an active role in the smart grid era by enabling operation in the load-following mode as demand for electricity from the grid fluctuates over time. In addition, other penalty functions such as emission penalties for CO2 or other criteria pollutants can be considered in the control system design.;The control system design is performed in two stages. In the first stage, a top-down analysis is used to generate a list of controlled, manipulated, and disturbance variables considering a scalar operational objective and other process constraints. In this section, innovative methods devised for primary and secondary controlled variable selection will be discussed.Exploiting these results, the second stage uses a bottom-up approach for simultaneous design of the control structure and the controllers. In this section, a novel means of control structure design has been proposed.;In this research, the proposed two-stage control system design approach is applied to the IGCC's acid gas removal (AGR) process which uses the physical solvent Selexol(TM) to selectively remove CO2 and H2S from the shifted syngas. Aspen Plus DynamicsRTM is used to develop the AGR process model while MATLABRTM is used to perform the control system design. This work has shown the proposed design procedure for plantwide control yields an optimal control structure. Additionally, the methods proposed in this work for primary and secondary controlled variable selection yield controlled variables which balance economic and control performance. Finally, the method proposed for control structure design has been found to yield a control structure that balance the control performance with controller complexity.
Recommended Citation
Jones, Dustin Douglas, "Plantwide Control System Design for IGCC Power Plants with CO2 Capture" (2014). Graduate Theses, Dissertations, and Problem Reports. 530.
https://researchrepository.wvu.edu/etd/530