Semester

Summer

Date of Graduation

2014

Document Type

Dissertation

Degree Type

PhD

College

Statler College of Engineering and Mineral Resources

Department

Lane Department of Computer Science and Electrical Engineering

Committee Chair

Bojan Cukic

Committee Co-Chair

Donald Adjeroh

Committee Member

Thirimachos Bourlai

Committee Member

Mark Culp

Committee Member

Katerina Goseva-Popstojanova

Committee Member

Lawrence Hornak

Abstract

The most commonly used system on desktop computers is a simple username and password approach which assumes that only genuine users know their own credentials. Once broken, the system will accept every authentication trial using compromised credentials until the breach is detected. Mobile devices, such as smart phones and tablets, have seen an explosive increase for personal computing and internet browsing. While the primary mode of interaction in such devices is through their touch screen via gestures, the authentication procedures have been inherited from keyboard-based computers, e.g. a Personal Identification Number, or a gesture based password, etc.;This work provides contributions to advance two types of behavioral biometrics applicable to desktop and mobile computers: keystroke dynamics and touch dynamics. Keystroke dynamics relies upon the manner of typing rather than what is typed to authenticate users. Similarly, a continual touch based authentication that actively authenticates the user is a more natural alternative for mobile devices.;Within the keystroke dynamics domain, habituation refers to the evolution of user typing pattern over time. This work details the significant impact of habituation on user behavior. It offers empirical evidence of the significant impact on authentication systems attempting to identify a genuine user affected by habituation, and the effect of habituation on similarities between users and impostors. It also proposes a novel effective feature for the keystroke dynamics domain called event sequences. We show empirically that unlike features from traditional keystroke dynamics literature, event sequences are independent of typing speed. This provides a unique advantage in distinguishing between users when typing complex text.;With respect to touch dynamics, an immense variety of mobile devices are available for consumers, differing in size, aspect ratio, operating systems, hardware and software specifications to name a few. An effective touch based authentication system must be able to work with one user model across a spectrum of devices and user postures. This work uses a locally collected dataset to provide empirical evidence of the significant effect of posture, device size and manufacturer on user authentication performance. Based on the results of this strand of research, we suggest strategies to improve the performance of continual touch based authentication systems.

Share

COinS