Date of Graduation

2016

Document Type

Thesis

Degree Type

MS

College

Statler College of Engineering and Mineral Resources

Department

Lane Department of Computer Science and Electrical Engineering

Committee Chair

Jeremy M Dawson

Committee Co-Chair

Thirimachos Bourlai

Committee Member

Christopher J Kolanko

Abstract

Automated white blood cell (WBC) counting systems process an extracted whole blood sample and provide a cell count. A step that would not be ideal for onsite screening of individuals in triage or at a security gate. Snapshot Hyper-Spectral imaging systems are capable of capturing several spectral bands simultaneously, offering co-registered images of a target. With appropriate optics, these systems are potentially able to image blood cells in vivo as they flow through a vessel, eliminating the need for a blood draw and sample staining. Our group has evaluated the capability of a commercial Snapshot Hyper-Spectral imaging system, specifically the Arrow system from Rebellion Photonics, in differentiating between white and red blood cells on unstained and sealed blood smear slides. We evaluated the imaging capabilities of this hyperspectral camera as a platform to build an automated blood cell counting system. Hyperspectral data consisting of 25, 443x313 hyperspectral bands with ~3nm spacing were captured over the range of 419 to 494nm. Open-source hyperspectral datacube analysis tools, used primarily in Geographic Information Systems (GIS) applications, indicate that white blood cells' features are most prominent in the 428-442nm band for blood samples viewed under 20x and 50x magnification over a varying range of illumination intensities. The system has shown to successfully segment blood cells based on their spectral-spatial information. These images could potentially be used in subsequent automated white blood cell segmentation and counting algorithms for performing in vivo white blood cell counting.

Share

COinS