Date of Graduation
2015
Document Type
Thesis
Degree Type
MS
College
Eberly College of Arts and Sciences
Department
Biology
Committee Chair
Kevin C Daly
Committee Co-Chair
Andrew Dacks
Committee Member
Sarah M Farris
Abstract
Animals have evolved mechanical and neural strategies for locomotion in almost every environment, overcoming the complexities of their habitats using specializations in body structure and animal behavior. These specializations are created by neural networks responsible for generating and altering muscle activation. Species specific musculoskeletal anatomy and physiology determine how locomotion is controlled through the transformation of motor patterns into body movements. Furthermore, when these species specific locomotor systems encounter perturbations during running and walking their behavioral and mechanical attributes determine how stability is established during and after the perturbation. It is still not understood how species specific structural and behavioral variables contribute to locomotion in non-uniform environments. To understand how these locomotor properties produce unique gaits and stability strategies we compared three species of brachyuran crabs during normal and perturbed running. Although all crabs ran sideways, morphological and kinematic differences explained how each species produced its unique gait and stability response. Despite the differences in running behavior and perturbation response, animals tended to use locomotor resources that were in abundance during stabilizing responses. Each crab regained stability during the perturbation response by altering leg joint movements or harnessing the body's momentum. These species body designs and running behavior show how slight changes in body structure and joint kinematics can produce locomotor systems with unique mechanical profiles and abilities. Understanding how evolutionary pressures have optimized animals' locomotor ability to successfully move in different environments will provide a deeper understanding of how to mimic these movements through mathematical models and robotics.
Recommended Citation
Ross, Ryan B., "Kinematic Basis for Body Specific Locomotor Mechanics and Perturbation Responses" (2015). Graduate Theses, Dissertations, and Problem Reports. 6531.
https://researchrepository.wvu.edu/etd/6531