Date of Graduation
2014
Document Type
Thesis
Degree Type
MS
College
Statler College of Engineering and Mineral Resources
Department
Mechanical and Aerospace Engineering
Committee Chair
Larry E Banta
Committee Co-Chair
Larry E Banta
Committee Member
Marvin Cheng
Committee Member
Valeriya Gritsenko
Abstract
Stroke is the primary cause of permanent impairment and neurological damage in the United States and Europe. Annually, about fifteen million individuals worldwide suffer from stroke, which kills about one third of them. For many years, it was believed that major recovery can be achieved only in the first six months after a stroke. More recent research has demonstrated that even many years after a stroke, significant improvement is not out of reach. However, economic pressures, the aging population, and lack of specialists and available human resources can interrupt therapy, which impedes full recovery of patients after being discharged from hospital following initial rehabilitation. Robotic devices, and in particular portable robots that provide rehabilitation therapy at home and in clinics, are a novel way not only to optimize the cost of therapy but also to let more patients benefit from rehabilitation for a longer time. Robots used for such purposes should be smaller, lighter and more affordable than the robots currently used in clinics and hospitals. The common human-machine interaction design criteria such as work envelopes, safety, comfort, adaptability, space limitations, and weight-to-force ratio must still be taken into consideration.;In this work a light, wearable, affordable assistive robot was designed and a controller to assist with an activity of daily life (ADL) was developed. The mechanical design targeted the most vulnerable group of the society to stroke, based on the average size and age of the patients, with adjustability to accommodate a variety of individuals. The novel mechanical design avoids motion singularities and provides a large workspace for various ADLs. Unlike similar exoskeleton robots, the actuators are placed on the patient's torso and the force is transmitted through a Bowden cable mechanism. Since the actuators' mass does not affect the motion of the upper extremities, the robot can be more agile and more powerful. A compact novel actuation method with high power-to-weight ratio called the twisted string actuation method was used. Part of the research involved selection and testing of several string compositions and configurations to compare their suitability and to characterize their performance. Feedback sensor count and type have been carefully considered to keep the cost of the system as low as possible. A master-slave controller was designed and its performance in tracking the targeted ADL trajectory was evaluated for one degree of freedom (DOF). An outline for proposed future research will be presented.
Recommended Citation
Shisheie, Reza, "Design, Fabrication, and Control of an Upper Arm Exoskeleton Assistive Robot" (2014). Graduate Theses, Dissertations, and Problem Reports. 6636.
https://researchrepository.wvu.edu/etd/6636