Author

Vivek Joshi

Date of Graduation

2014

Document Type

Thesis

Degree Type

MS

College

Statler College of Engineering and Mineral Resources

Department

Lane Department of Computer Science and Electrical Engineering

Committee Chair

Jignesh Solanki

Committee Co-Chair

Radhey Sharma

Committee Member

Jignesh Solanki

Committee Member

Sarika K Solanki

Abstract

In the present grid real time control systems are the energy management systems and distribution management systems that utilize measurements from real-time units (RTUs) and Supervisory Control and Data Acquisition (SCADA). The SCADA systems are designed to operate on isolated, private networks without even basic security features which are now being migrated to modern IP-based communications providing near real time information from measuring and controlling units. To function "brain" (SCADA) properly "heart" (RTUs) should provide necessary response thereby creating a coupling which makes SCADA systems as targets for cyber-attacks to cripple either part of the electric transmission grid or fully shut down (create blackout) the grid. Cyber-security research for a distribution grid is a topic yet to be addressed. To date firewalls and classic signature-based intrusion detection systems have provided access control and awareness of suspicious network traffic but typically have not offered any real-time detection and defense solutions for electric distribution grids.;This thesis work not only addresses the cyber security modeling, detection and prevention but also addresses model inconsistencies for effectively utilizing and controlling distribution management systems. Inconsistencies in the electrical design parameters of the distribution network or cyber-attack conditions may result in failing of the automated operations or distribution state estimation process which might lead the system to a catastrophic condition or give erroneous solutions for the probable problems. This research work also develops a robust and reliable voltage controller based on Multiple Linear Regression (MLR) to maintain the voltage profile in a smart distribution system under cyber-attacks and model inconsistencies. The developed cyber-attack detection and mitigation algorithms have been tested on IEEE 13 node and 600+ node real American electric distribution systems modeled in Electric Power Research Institute's (EPRI) OpenDSS software.

Share

COinS