Date of Graduation

2015

Document Type

Thesis

Degree Type

MS

College

Statler College of Engineering and Mineral Resources

Department

Lane Department of Computer Science and Electrical Engineering

Committee Chair

Lawrence A Hornak

Committee Co-Chair

Manivannan Ayyakkannu

Committee Member

Jeremy Dawson

Committee Member

Dimitris Korakakis

Abstract

Since the invention of the first visible spectrum (red) LED by Holonyak in 1962, there has been a need for more efficient, more reliable and less expensive LEDs. The III-nitrides revolutionized semiconductor technology with their applications in the blue LED's. However the internal quantum efficiency of LED's are limited by the deep level traps in GaN substrate. Traps are defects in the crystal lattice, which depends on growth parameters. These traps act as non-radiative centers where non-radiative recombination occurs without conversion of available energy into light. Characterization of these traps in a material is necessary for better understanding of the material growth quality and resulting device performance. In this work Capacitance-Voltage (C-V) and Deep Level Transient Spectroscopy (DLTS) are conducted which provide electronic properties of trap centers like activation energy, doping concentration and capture cross-section. In n-GaN grown by Metalorganic Chemical Vapor Deposition (MOCVD) on Sapphire two defects types are detected and are characterized by Capacitance-Voltage and Deep Level Transient Spectroscopy. Two deep levels E1 and E2 are typically observed in n-GaN with the activation energies of 0.21eV and 0.53eV at 125°K and 325°K, respectively. The deep level E1 is caused by linear line defects along dislocation cores while deep level E2 is related to point defects. The characterization techniques, experimental systems and preliminary characterization results are discussed in detail.

Share

COinS