Date of Graduation
2014
Document Type
Thesis
Degree Type
MS
College
Statler College of Engineering and Mineral Resources
Department
Civil and Environmental Engineering
Committee Chair
Hema J Siriwardane
Committee Co-Chair
Raj K Gondle
Committee Member
John D Quaranta
Abstract
In this report, the vertical extent of hydraulic fractures in a layered geological formation was investigated. In reality, the geology of the earth is heterogeneous, and therefore fracture growth will be significantly different. Fracture growth was simulated by using numerical models with relevant geomechanical, fluid flow and proppant transport properties. Results show the horizontal stress gradient plays an important role in fracture propagation. Lower horizontal stress contrasts between layers allow for greater fracture propagation in the vertical direction. Higher fluid viscosities tend to increase the fracture height and width, while decreasing the fracture length. Several other geomechanical properties such as the elastic modulus, fracture toughness, and leakoff coefficient have some influence on the vertical fracture growth. To account for the variability of properties, 300 realizations were considered by using a statistical sampling method. Most of the simulated fractures (about 50%) extended into the immediate overburden layers. Results from these cases show that the clearance depth was in the range from about 4300 feet to 7500 feet.
Recommended Citation
Hulcher, Carter L., "Extent of Hydraulic Fractures in a Multilayered Geologic Media" (2014). Graduate Theses, Dissertations, and Problem Reports. 7314.
https://researchrepository.wvu.edu/etd/7314