Semester
Fall
Date of Graduation
2019
Document Type
Dissertation
Degree Type
PhD
College
Statler College of Engineering and Mineral Resources
Department
Mechanical and Aerospace Engineering
Committee Chair
Songgang Qiu
Committee Member
Hailin Li
Committee Member
Andrew Nix
Committee Member
V’yacheslav Akkerman
Committee Member
Fernando Lima
Abstract
The regenerator is located between the heat accepter and the heat rejecter of the Stirling engine. It works as a thermal energy storage component in the engine. Most of the regenerators are made of woven screen or random fiber. However, the flow going through the woven screen or random fiber is similar to the cylinders in crossflow which has flow separation. To achieve higher engine efficiency, it is required to design a regenerator which has higher convective heat transfer, lower pressure drops. Therefore, a parallel channel regenerator called a robust foil regenerator was designed and manufactured.
In this study, a regenerator test rig was built to measure the flow loss and heat transfer through the robust foil regenerator. Additionally, a CFD model was developed to further understand the physics of the oscillating flow. For the flow loss, both the experimental and the simulation results show that the robust foil regenerator has a significantly lower friction coefficient than the woven screen regenerator. For the heat transfer, the Nusselt number of the woven screen regenerator is higher than the Nusselt number of the robust foil regenerator.
To evaluate the overall performance of the robust foil regenerator and the woven screen regenerator, the figure of merit was utilized, which is commonly used for regenerator performance evaluation. The result shows that the robust foil regenerator has a better performance than the woven screen regenerator. Therefore, in conclusion, to increase the efficiency of the Stirling Engine, the robust foil regenerator is an excellent choice.
Recommended Citation
Yanaga, Koji, "Experimental and Numerical Study of the Stirling Engine Robust Foil Regenerator" (2019). Graduate Theses, Dissertations, and Problem Reports. 7401.
https://researchrepository.wvu.edu/etd/7401