Semester
Spring
Date of Graduation
2020
Document Type
Thesis (Open Access)
Degree Type
MS
College
Statler College of Engineering and Mineral Resources
Department
Petroleum and Natural Gas Engineering
Committee Chair
Shahab Mohaghegh
Committee Member
Mehrdad Zamirian
Committee Member
Kashy Aminian
Committee Member
Sam Ameri
Abstract
Data-Driven Reservoir Modeling (DDRM), commonly referred to as Top-Down Modeling (TDM), is a relatively new and cutting-edge approach to the traditional numerical reservoir modeling and simulation techniques. DDRM uses artificial intelligence and machine learning in tandem to construct full-field models using measured data instead of calculations that refer to equations derived from averaged values and type curves. TDM allows all of the measured data from a field to be combined and used towards generating predictions of the production on a well by well basis for a specific field. Due to TDM not using the traditional physics-based approach, it is subjected to a plethora of criticisms within the industry. Therefore, the purpose of this thesis is to confirm the capabilities of TDM versus data synthetically generated using a Numerical Reservoir Simulator (NRS). To do this, the fluid flow through porous media will be modeled via the use of a traditional NRS; this way, everything is known about the reservoir in question. The data generated will then be exported and used towards the construction of the TDM. To complete the proposed objectives of this thesis, an application will be used to aid in the development of a TDM. All of the data used in order to develop and history match the TDM will have been generated via the NRS; this is done to confirm the abilities of TDM forecasting existing wells behavior. Once the TDM has been constructed; the forecast data will be compared to that from the NRS to validate the ability of the TDM.
Recommended Citation
Morrow, Anthony William, "Confirmation of TDM Capabilities in Modeling Compartmentalized WAG EOR" (2020). Graduate Theses, Dissertations, and Problem Reports. 7570.
https://researchrepository.wvu.edu/etd/7570