Semester
Spring
Date of Graduation
2020
Document Type
Thesis
Degree Type
MS
College
Statler College of Engineering and Mineral Resources
Department
Lane Department of Computer Science and Electrical Engineering
Committee Chair
Thirimachos Bourlai
Committee Member
Jeremy Dawson
Committee Member
Yuxin Liu
Abstract
In non-favorable conditions for visible imaging like extreme illumination or nighttime, there is a need to collect images in other spectra, specifically infrared. Mid-Wave infrared (3-5 microm) images can be collected without giving away the location of the sensor in varying illumination conditions. There are many algorithms for face detection, face alignment, face recognition etc. proposed in visible band till date, while the research using MWIR images is highly limited. Face detection is an important pre-processing step for face recognition, which in turn is an important biometric modality. This thesis works towards bridging the gap between MWIR and visible spectrum through three contributions. First, a dual band based deep face detection model that works well in visible and MWIR spectrum is proposed using transfer learning. Different models are trained and tested extensively using visible and MWIR images and the one model that works well for this data is determined. For this model, experiments are conducted to learn the speed/accuracy trade-off. Following this, the available MWIR dataset is extended through augmentation using traditional methods and generative adversarial networks (GANs). Traditional methods used to augment the data are brightness adjustment, contrast enhancement, applying noise to and de-noising the images. A deep learning based GAN architecture is developed and is used to generate new face identities. The generated images are added to the original dataset and the face detection model developed earlier is once again trained and tested. The third contribution is the proposal of another GAN that converts given thermal ace images into their visible counterparts. A pre-trained model is used as discriminator for this purpose and is trained to classify the images as real and fake and an identity network is used to provide further feedback to the generator. The generated visible images are used as probe images and the original visible images are used as gallery images to perform face recognition experiments using a state-of-the-art visible-to-visible face recognition algorithm.
Recommended Citation
Mokalla, Suha Reddy, "Deep Learning Based Face Detection and Recognition in MWIR and Visible Bands" (2020). Graduate Theses, Dissertations, and Problem Reports. 7632.
https://researchrepository.wvu.edu/etd/7632
Embargo Reason
Patent Pending