Semester
Summer
Date of Graduation
2020
Document Type
Thesis
Degree Type
MS
College
Statler College of Engineering and Mineral Resources
Department
Industrial and Managements Systems Engineering
Committee Chair
Ashish D. Nimbarte
Committee Member
Warren R. Myers
Committee Member
Gary L. Winn
Abstract
A reduction in the % stationarity of surface electromyography (SEMG) signals with respect to the initial or fresh condition is used to predict localized muscle fatigue. However, factors other than muscle fatigue can also influence the stationarity of SEMG signals. This study was aimed at analyzing the effect of various work/task related factors on the stationarity of SEMG signals obtained from non-fatigued shoulder muscles. Twelve participants were recruited for data collection and each one performed 120 trials characterized by the combination of 2 shoulder angles (60° and 120°), 2 planes of exertions (sagittal and scapular), 3 force levels (0lb, 2.5lb, 5lb), 5 force directions (pull back, pull up, pull down, pull right and pull left) and 2 repetitions. The SEMG data were recorded from seven shoulder muscles (supraspinatus, infraspinatus, middle deltoid, anterior deltoid, posterior deltoid, biceps, triceps). Modified Reverse Arrangement Test with five window sizes (128, 256, 512, 768, and 1024 millisecond(ms)) was used to process the SEMG data. The effects of work/task related factors on % stationarity of shoulder muscles was analyzed using ANOVA. The mean stationarity of SEMG signals ranged from 87.8% to 94.9%. Among the work/task related factors, the joint angle and the plane of exertion affected the % stationarity in fewer instances compared to the force level and the force direction. The exertions that produced higher activation (SEMG amplitude) resulted in lower % stationarity, indicating an inverse relationship between % stationarity and muscle activation. The variability in % stationarity increased from 3.3% to 10.0% when the window size was increased from 128 ms to 1024 ms. The study findings could be useful in improving real-time fatigue prediction methods.
Recommended Citation
Ci, Hui, "Analysis of factors influencing the stationarity of surface electromyography signals measured in non-fatigued shoulder muscles" (2020). Graduate Theses, Dissertations, and Problem Reports. 7715.
https://researchrepository.wvu.edu/etd/7715