Semester

Summer

Date of Graduation

2020

Document Type

Thesis

Degree Type

MS

College

Statler College of Engineering and Mineral Resources

Department

Industrial and Managements Systems Engineering

Committee Chair

Alan McKendall

Committee Member

Kenneth R. Currie

Committee Member

Zhichao Liu

Abstract

The generalized quadratic assignment problem (GQAP) is the task of assigning a set of facilities to a set of locations such that the sum of the assignment and transportation costs is minimized. The facilities may have different space requirements, and the locations may have varying space capacities. Also, multiple facilities may be assigned to each location such that space capacity is not exceeded. In this research, an application of the GQAP is presented for assigning a set of machines to a set of locations on the plant floor. Two meta-heuristics are proposed for solving the GQAP: tabu search (TS) and simulated annealing (SA). In addition, two types of neighborhood structures are considered for each meta-heuristic. A set of 21 test problems, available in the literature, is used to evaluate the performances of the meta-heuristics using one or two neighborhood structures. Computational experiments show that the proposed SA heuristics performed better than the proposed TS heuristics. The SA heuristics obtained results better than those presented in the literature for three of the test problems. On the other hand, the TS heuristics did not perform well for the problems with high space capacity utilization.

Embargo Reason

Publication Pending

Share

COinS