Date of Graduation
2013
Document Type
Dissertation/Thesis
Abstract
Finite element numerical simulations are used to examine the effects of various parameters on synthetic charge-selective nanochannel systems in series with microchannels. In particular the origins of uidic ionic current rectification and the transient development of such systems in response to electric potential biases is explored. The origin of current rectification is these systems is found to be asymmetric concentration polarization. This leads to diffusion layers that form in response to an applied bias . The asymmetric diffusion layers may have 1D and higher dimensional origins. The systems are found to change over three time scales each associated with a different length scale. The related length scales are the electric double layer scale, the microchannel length, and the nanochannel length. Finally, we investigated how nanochannel-generated electroosmotic how affects the transient developments.
Recommended Citation
Booth, William Albert, "Ion Transport Across Nano-Microchannel Interfaces." (2013). Graduate Theses, Dissertations, and Problem Reports. 8509.
https://researchrepository.wvu.edu/etd/8509