Document Type

Article

Publication Date

2017

College/Unit

School of Pharmacy

Department/Program/Center

Pharmaceutical Sciences

Abstract

Background

Lung cancer and pleural mesothelioma are two of the most deadly forms of cancer. The prognosis of lung cancer and mesothelioma is extremely poor due to limited treatment modalities and lack of understanding of the disease mechanisms. We have identified mesothelin as a potentially unique therapeutic target that as a specific advantage appears nonessential in most cell types. Mesothelin (MSLN), a plasma membrane differentiation antigen, is expressed at a high level in many human solid tumors, including 70% of lung cancer and nearly all mesotheliomas. However, the role of MSLN in the disease process and underlying mechanisms is largely unknown.

Methods

ShRNA knockdown and overexpression of MSLN were performed in human cancer cell lines and corresponding normal cells, respectively. Tumorigenic and metastatic effects of MSLN were examined by tumor sphere formation, migration, and invasion assays in vitro, as well as xenograft tumor assay in vivo. EMT and CSCs were detected by qPCR array, immunoblotting and flow cytometry.

Results

MSLN plays a key role in controlling epithelial-to-mesenchymal transition (EMT) and stem properties of human lung cancer and mesothelioma cells that control their tumorigenicity and metastatic potential. Firstly, MSLN was found to be highly upregulated in non-small cell lung cancer (NSCLC) patient tissues and in lung carcinoma and mesothelioma cell lines. Secondly, genetic knockdown of MSLN significantly reduced anchorage-independent cell growth, tumor sphere formation, cell adhesion, migration and invasion in vitro, as well as tumor formation and metastasis in vivo. Thirdly, ectopic overexpression of MSLN induced the malignant phenotype of non-cancerous cells, supporting its role as an oncogene. Finally, mechanistic studies revealed that knockdown of MSLN reversed EMT and attenuated stem cell properties, in addition to inhibiting tumor growth and metastasis.

Conclusions

These results indicate an essential role of MSLN in controlling EMT and stem cell properties of human lung cancer and mesothelioma cells. Since EMT is an important process in tumor progression and metastasis, and MSLN is nonessential in most normal tissue, our findings on MSLN may provide new insights into the disease mechanisms and may aid in the development of novel targeted therapy for lung cancer and mesothelioma.

Source Citation

He, X., Wang, L., Riedel, H. et al. Mesothelin promotes epithelial-to-mesenchymal transition and tumorigenicity of human lung cancer and mesothelioma cells. Mol Cancer 16, 63 (2017). https://doi.org/10.1186/s12943-017-0633-8

Comments

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.