Semester

Fall

Date of Graduation

2006

Document Type

Thesis

Degree Type

MS

College

Statler College of Engineering and Mineral Resources

Department

Lane Department of Computer Science and Electrical Engineering

Committee Chair

Ali Feliachi.

Abstract

The objective of this research is to design a controller for a gas turbine of an Electric Shipboard Power System (ESPS) and to develop a load sharing strategy for its energy management. A suitable model for the gas turbine is selected and the effects of the dynamics are investigated for the different loads of the ESPS. The gas turbine controller is a Proportional Integral Derivative (PID) controller, whose parameters are tuned using the Particle Swarm Optimization (PSO) technique. The load on the system has three components: a propulsion load, a pulsed load to simulate a high energy weapon system and a power supply load for the remaining loads such as pumps, lighting systems, etc. Load sharing is inevitable when demand exceeds the available power supply. In this case, based on the priorities of the loads and the available power, a strategy is presented to supply power to the most critical loads. To illustrate this, a load allocation algorithm is developed using stateflow diagrams. The potential of this algorithm is demonstrated by two case studies performed using the three loads, with the highest priority assigned to the propulsion load in case 1, and power supply load in case 2. The results of this research can be further extended to real time applications.

Share

COinS