Semester

Summer

Date of Graduation

2005

Document Type

Dissertation

Degree Type

PhD

College

Statler College of Engineering and Mineral Resources

Department

Lane Department of Computer Science and Electrical Engineering

Committee Chair

Afzel Noore

Abstract

Neural network approach has proven to be a universal approximator for nonlinear continuous functions with an arbitrary accuracy. It has been found to be very successful for various learning and prediction tasks. However, supervised learning using neural networks has some limitations because of the black box nature of their solutions, experimental network parameter selection, danger of overfitting, and convergence to local minima instead of global minima. In certain applications, the fixed neural network structures do not address the effect on the performance of prediction as the number of available data increases. Three new approaches are proposed with respect to these limitations of supervised learning using neural networks in order to improve the prediction accuracy.;Dynamic learning model using evolutionary connectionist approach . In certain applications, the number of available data increases over time. The optimization process determines the number of the input neurons and the number of neurons in the hidden layer. The corresponding globally optimized neural network structure will be iteratively and dynamically reconfigured and updated as new data arrives to improve the prediction accuracy. Improving generalization capability using recurrent neural network and Bayesian regularization. Recurrent neural network has the inherent capability of developing an internal memory, which may naturally extend beyond the externally provided lag spaces. Moreover, by adding a penalty term of sum of connection weights, Bayesian regularization approach is applied to the network training scheme to improve the generalization performance and lower the susceptibility of overfitting. Adaptive prediction model using support vector machines . The learning process of support vector machines is focused on minimizing an upper bound of the generalization error that includes the sum of the empirical training error and a regularized confidence interval, which eventually results in better generalization performance. Further, this learning process is iteratively and dynamically updated after every occurrence of new data in order to capture the most current feature hidden inside the data sequence.;All the proposed approaches have been successfully applied and validated on applications related to software reliability prediction and electric power load forecasting. Quantitative results show that the proposed approaches achieve better prediction accuracy compared to existing approaches.

Share

COinS