Semester
Fall
Date of Graduation
2019
Document Type
Dissertation
Degree Type
PhD
College
Statler College of Engineering and Mineral Resources
Department
Mechanical and Aerospace Engineering
Committee Chair
Sergiy Yakovenko
Committee Member
Robert Gaunt
Committee Member
Yu Gu
Committee Member
Sam Mukdadi
Committee Member
Victor Mucino
Abstract
Movement is the only way a person can interact with the world around them. When trauma to the neuromuscular systems disrupts the control of movement, quality of life suffers. To restore limb functionality, active robotic interventions and/or rehabilitation are required. Unfortunately, the primary obstacle in a person’s recovery is the limited robustness of the human-machine interfaces. Current systems rely on control approaches that rely on the person to learn how the system works instead of the system being more intuitive and working with the person naturally. My research goal is to design intuitive control mechanisms based on biological processes termed the biomimetic approach. I have applied this control scheme to problems with restorative robotics focused on the upper and lower limb control.
Operating an advanced active prosthetic hand is a two-pronged problem of actuating a high-dimensional mechanism and controlling it with an intuitive interface. Our approach attempts to solve these problems by going from muscle activity, electromyography (EMG), to limb kinematics calculated through dynamic simulation of a musculoskeletal model. This control is more intuitive to the user because they attempt to move their hand naturally, and the prosthetic hand performs that movement. The key to this approach was validating simulated muscle paths using both experimental measurements and anatomical constraints where data is missing. After the validation, simulated muscle paths and forces are used to decipher the intended movement. After we have calculated the intended movement, we can move a prosthetic hand to match. This approach required minimal training to give an amputee the ability to control prosthetic hand movements, such as grasping. A more intuitive controller has the potential to improve how people interact and use their prosthetic hands.
Similarly, the rehabilitation of the locomotor system in people with damaged motor pathways or missing limbs require appropriate interventions. The problem of decoding human motor intent in a treadmill walking task can be solved with a biomimetic approach. Estimated limb speed is essential for this approach according to the theoretical input-output computation performed by spinal central pattern generators (CPGs), which represents neural circuitry responsible for autonomous control of stepping. The system used the locomotor phases, swing and stance, to estimate leg speeds and enable self-paced walking as well as steering in virtual reality with congruent visual flow. The unique advantage of this system over the previous state-of-art is the independent leg speed control, which is required for multidirectional movement in VR. This system has the potential to contribute to VR gait rehab techniques.
Creating biologically-inspired controllers has the potential to improve restorative robotics and allow people a better opportunity to recover lost functionality post-injury.
Movement is the only way a person can interact with the world around them. When trauma to the neuromuscular systems disrupts the control of movement, quality of life suffers. To restore limb functionality, active robotic interventions and/or rehabilitation are required. Unfortunately, the primary obstacle in a person’s recovery is the limited robustness of the human-machine interfaces. Current systems rely on control approaches that rely on the person to learn how the system works instead of the system being more intuitive and working with the person naturally. My research goal is to design intuitive control mechanisms based on biological processes termed the biomimetic approach. I have applied this control scheme to problems with restorative robotics focused on the upper and lower limb control.Operating an advanced active prosthetic hand is a two-pronged problem of actuating a high-dimensional mechanism and controlling it with an intuitive interface. Our approach attempts to solve these problems by going from muscle activity, electromyography (EMG), to limb kinematics calculated through dynamic simulation of a musculoskeletal model. This control is more intuitive to the user because they attempt to move their hand naturally, and the prosthetic hand performs that movement. The key to this approach was validating simulated muscle paths using both experimental measurements and anatomical constraints where data is missing. After the validation, simulated muscle paths and forces are used to decipher the intended movement. After we have calculated the intended movement, we can move a prosthetic hand to match. This approach required minimal training to give an amputee the ability to control prosthetic hand movements, such as grasping. A more intuitive controller has the potential to improve how people interact and use their prosthetic hands.Similarly, the rehabilitation of the locomotor system in people with damaged motor pathways or missing limbs require appropriate interventions. The problem of decoding human motor intent in a treadmill walking task can be solved with a biomimetic approach. Estimated limb speed is essential for this approach according to the theoretical input-output computation performed by spinal central pattern generators (CPGs), which represents neural circuitry responsible for autonomous control of stepping. The system used the locomotor phases, swing and stance, to estimate leg speeds and enable self-paced walking as well as steering in virtual reality with congruent visual flow. The unique advantage of this system over the previous state-of-art is the independent leg speed control, which is required for multidirectional movement in VR. This system has the potential to contribute to VR gait rehab techniques.Creating biologically-inspired controllers has the potential to improve restorative robotics and allow people a better opportunity to recover lost functionality post-injury.
Recommended Citation
Boots, Matthew T., "A Biomimetic Approach to Controlling Restorative Robotics" (2019). Graduate Theses, Dissertations, and Problem Reports. 7384.
https://researchrepository.wvu.edu/etd/7384
Embargo Reason
Patent Pending
Dissertation Supplementary Materials
Included in
Acoustics, Dynamics, and Controls Commons, Biomechanical Engineering Commons, Biomedical Devices and Instrumentation Commons, Neurosciences Commons, Orthotics and Prosthetics Commons