Date of Graduation

1998

Document Type

Dissertation/Thesis

Abstract

Electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) studies have been performed on flux-grown and hydrothermal-grown potassium titanyl phosphate (KTiOPO{dollar}\\sb4{dollar}, or KTP) crystals. Four radiation-induced tapped-electron centers have been identified and a complete angular dependence analysis has provided spin-Hamiltonian parameters for each center. Either near-band-edge laser light (355-nm third-harmonic output from a Nd:YAG laser) or 60-kV x-rays can be used to produce the defects. These electron traps are perturbed Ti{dollar}\\sp{lcub}3+{rcub}{dollar} ions, where the perturbation acts to stabilize the electron. Hyperfine parameters have been used to deduce that protons (in the form of OH-ions) act to stabilize the electron in hydrothermal material, while the stabilization in flux material probably comes from divalent impurities and oxygen vacancies. The thermal stability of the centers varies from 150 K to 300 K. The principal g values have been used to confirm that the titanium centers have related optical absorption bands in the visible region. Preliminary transient absorption experiments have been developed to measure the lifetime of the induced absorption. It is postulated that these centers can be formed during normal device operation and are closely related to the "gray-track" effect. Additional analysis has also been performed on the previously identified radiation-induced trapped-hole center (Edwards et. al., Phys. Rev. B 48, 6884 (1993)). The g values and hyperfine parameters are revised though the defect model remains unchanged.

Share

COinS